Package: rapbase (via r-universe)

October 21, 2024
Type Package
Title Base Functions and Resources for Rapporteket
Version 1.24.3
Maintainer Arnfinn Hykkerud Steindal <arnfinn.steindal@gmail.com>

Description Provide common functions and resources for registry
specific R-packages at Rapporteket
<https://rapporteket.github.io/rapporteket/articles/short_introduction.html>.
This package is relevant for developers of packages/registries
at Rapporteket.

License GPL-3
Encoding UTF-8
LazyData true
Depends R (>=3.5.0)

Imports blob, bookdown, DBI, digest, dplyr, DT, jsonlite, kableExtra,
knitr, magrittr, readr, rlang, RMariaDB, rmarkdown,
rpivotTable, sendmailR, shiny, shinyalert, sship (>=0.9.0),
utils, yaml

RoxygenNote 7.2.3
URL https://github.com/Rapporteket/rapbase

BugReports https://github.com/Rapporteket/rapbase/issues
Suggests httptest, lifecycle, rvest, testthat, withr

VignetteBuilder knitr

Repository https://areedv.r-universe.dev

RemoteUrl https://github.com/rapporteket/rapbase

RemoteRef HEAD

RemoteSha 9b68c39ee48b60541edecdad0277¢c203ce3ccb52

https://rapporteket.github.io/rapporteket/articles/short_introduction.html
https://github.com/Rapporteket/rapbase
https://github.com/Rapporteket/rapbase/issues

2 Contents

Contents
getFun oL L e e 3
AeStAUtOREPOIt e 3
applog e e 4
appNavbarUserWidget 4
autoReport. L e e e 6
createAutoReport L L. e e 9
deleteAutoReport e e 11
EXPOTE . v v v v e o e e e e e e e e e e e e e e e e e e 11
exportGuide L. e e 12
filterAutoRep e 13
findNextRunDate L 14
firelnTheHole 15
getConfig 15
getGithub 16
getRapPackages 17
getRegs e e 17
halloRapporteket L 18
howWeDealWithPersonalData 18
isPkgRapReg L 19
iSRapContext e 19
loadRegData 20
logger e 20
makeAutoReportTab 24
makeRunDayOfYearSequence 25
makeStandardTable 26
navbarWidget L 27
noOptOutOk e 29
TAPDASE e e e e e e e e e e e e e 29
rapCloseDbConnection o it 29
rapOpenDbConnection e 30
readAutoReportData oL 30
renderRmd oL 31
runAutoReport oL 32
runBulletino 33
runNoweb 33
sanitizelog e e e e 34
sendEmail 34
stagingData L e e e e 35
SEALS e e 37
statsGuide L L e e e 38
unitAttribute L L e 39
upgradeAutoReportData 39
userAttribute L 40
userInfo L. 41
writeAutoReportData L 42

Index 44

.getFun

.getFun Provide explicit reference to function for do.call

Description

Provide explicit reference to function for do.call

Usage
.getFun(x)

Arguments

X string with explicit reference, i.e. "package::function’

Value

value of the exported ’function’ in *package’

. testAutoReport Simple test of automated report

Description

Simple test of automated reporting from definitions provided in a yaml config file

Usage
.testAutoReport(aNum = 1, aChar = "a", anExp = Sys.Date(), bulletin = 0)

Arguments

aNum a number

aChar a character

anExp an expression

bulletin Integer defining if report is of type bulletin (1) or not (0). Set to 0 by default
Value

A simple message listing the contents of the arguments

Examples

. testAutoReport()

4 appNavbarUserWidget

appLog App log test dataset.

Description

A dataset containing test entries for the application log.

Usage

appLog

Format

A data frame with 20 rows and 7 variables:

time character timestamp
user user name

name user full name
group users group/registry
role users role

resh_id users organization

message log message

appNavbarUserWidget Create widget for registry apps at Rapporteket

Description

Provides a widget-like information and utility block to be applied to all registry apps at Rapporteket.
Contains the user name, organization and logout/exit as hyperlinked text.

Usage

appNavbarUserWidget (
user = "Undefined person”,
organization = "Undefined organization”,
addUserInfo = FALSE,
selectOrganization = FALSE,
namespace = NULL

appNavbarUser Widget 5

Arguments

user String providing the name of the user
organization String providing the organization of the user

addUserInfo Logical defining whether a user data pop-up is to be part of the widget (TRUE)
or not (FALSE, default)

selectOrganization
Logical if organization can be selected.

namespace Character string providing the namespace to use, if any. Defaults is NULL in
which case no namespace will be applied.

Details

Normally, user information will be be provided through the session parameter and hence this will
have to be provided from the server. The "rendering" of this info must hence be done within a layout
element at the client such as a tabPanel. Selecting any one of them should be fine... At the client,
both uiOutput and textOutput will be fine "rendering the information provided by the server.

Example of use in shiny (pseudo code):

server <- function(input, output, session) {

output$appUserName <- renderText(getUserName(session))
output$appUserOrg <- renderText(getUserReshId(session))

b

ui <- taglist(
navbarPage(
tabPanel(.. .,

appNavbarUserWidget (user = uiOutput(appUserName),
organization = textOutput(appUseroOrg))

),

Value

Ready made html script

Examples

appNavbarUserWidget ()

autoReportUI(id)

autoReportOrgInput(id)

autoReportOrgServer(id, orgs)

autoReportFormatInput(id)

autoReportFormatServer(id)

autoReportInput(id)

autoReportServer(

id,

registryName,

type,

org = NULL,

paramNames = shiny::reactiveVal(c("")),
paramValues = shiny::reactiveVal(c("")),
reports = NULL,

orgs = NULL,
eligible = TRUE,
freq = "month”
)
autoReportServer2(
id,
registryName,
type,
org = NULL,

paramNames = shiny::reactiveVal(c("")),
paramValues = shiny::reactiveVal(c("")),
reports = NULL,

orgs = NULL,

eligible = TRUE,

freq = "month"”,

user

6 autoReport
autoReport Shiny modules and helper functions for registry auto reports
Description
These shiny modules may be used to set up auto reporting from registries at Rapporteket.
Usage

autoReport 7

autoReportApp(
registryName = "rapbase”,
type = "subscription”,

reports = NULL,
paramNames = shiny::reactive(c("")),

orgs = NULL
)
orglList2df(orgs)
Arguments

id Character string providing the shiny module id.

orgs Named list of organizations (names) and ids (values). When set to NULL (default)
the ids found in auto report data will be used in the table listing existing auto
reports.

registryName Character string with the registry name key. Must correspond to the registry R
package name.

type Character string defining the type of auto reports. Must be one of c(”subscription”,
"dispatchment”, "bulletin")

org Shiny reactive or NULL (default) defining the organization (id) of the data
source used for dispatchments and bulletins (in which case it cannot be set to
NULL) and its value will be used to populate the organization field in auto re-
port data (autoReport.yml) for these auto report types. On the other hand, since
subscriptions are personal (per user) the only relevant organization id will im-
plicit be that of the user and in this case any value of org will be disregarded.

paramNames Shiny reactive value as a vector of parameter names of which values are to be
set interactively at application run time. Each element of this vector must match
exactly those of paramValues. Default value is shiny: :reactivevVal("").

paramValues Shiny reactive value as a vector of those parameter values to be set interactively,
i.e. as per user input in the application. Default value is set to shiny: : reactiveVal("")
in which case parameter values defined in reports will be used as is. In other
words, explicit use of paramValues will only be needed if parameter values
must be changed during application run time. If so, each element of this vector
must correspond exactly to those of paramNames.

reports List of a given structure that provides meta data for the reports that are made
available as automated reports. See Details for further description.

eligible Logical defining if the module should be allowed to work at full capacity. This
might be useful when access to module products should be restricted. Default is
TRUE, i.e. no restrictions.

freq Character string defining default frequency set in the auto report GUIL. Must
be one of c("day”, "week”, "month"”, "quarter”, "year"). Default value is
"month".

user List of shiny reactive values providing user metadata and privileges correspond-

ing to the return value of navbarWidgetServer.

8 autoReport

Details

The reports argument must be a list where each entry represents one report and its name will be
used in the auto report user interface for selecting reports, e.g. reports = list(MagicReport =
...) will produce the entry "MagicReport" in the GUI list of reports to select from. The value of
each entry must be another list with the following names and values:

synopsis character string describing the report
fun report function base name (without"()")
paramNames character vector naming all arguments of fun

paramValues vector with values corresponding to paramNames

These named values will be used to run reports none-interactively on a given schedule and must
therefore represent existing and exported functions from the registry R package. For subscriptions
the reports list can be used as is, more specifically that the values provided in paramValues can
go unchanged. It is likely that parameter values must be set dynamically at runtime in which case
paramValues must be a reactive part of the application. See Examples on how function arguments
may be used as reactives in an application.

Value

In general, shiny objects. In particular, autoreportOrgServer returns a list with names "name"
and "value" with corresponding reactive values for the selected organization name and id. This may
be used when parameter values of auto report functions needs to be altered at application run time.
orglList2df returns a data frame with columns "name" and "id".

Examples

make a list for report metadata
reports <- list(
FirstReport = list(

synopsis = "First example report”,
fun = "funl1”,
paramNames = c("organization”, "topic"”, "outputFormat"),
paramValues = c(111111, "work”, "html")

),

SecondReport = list(
synopsis = "Second example report”,
fun = "fun2",
paramNames = c("organization”, "topic"”, "outputFormat"),
paramValues = c(111111, "leisure”, "pdf")

)

)

make a list of organization names and numbers
orgs <- list(

OrgOne = 111111,

OrgTwo = 222222
)

client user interface function

createAutoReport 9

ui <- shiny::fluidPage(
shiny: :sidebarLayout(
shiny: :sidebarPanel(
autoReportFormatInput(”test"),
autoReportOrgInput(”test”),
autoReportInput(”test”)
),
shiny: :mainPanel(
autoReportUI("test”)
)
)
)

server function

server <- function(input, output, session) {
org <- autoReportOrgServer("test", orgs)
format <- autoReportFormatServer("test")

set reactive parameters overriding those in the reports list
paramNames <- shiny::reactive(c("organization”, "outputFormat”))
paramValues <- shiny::reactive(c(org$value(), format()))

autoReportServer(
id = "test”, registryName = "rapbase”, type = "dispatchment”,
org = org$value, paramNames = paramNames, paramValues = paramValues,
reports = reports, orgs = orgs, eligible = TRUE
)
3

run the shiny app in an interactive environment
if (interactive()) {
shiny: :shinyApp(ui, server)

3

createAutoReport Create and add report to config

Description

Adds an entry to the system configuration of reports to run at given intervals. After generating the
configuration from the new entry the function load the current system configuration, adds the new
entry and saves the updated system configuration.

Usage

createAutoReport(
synopsis,
package,
type = "subscription”,
fun,

10 createAutoReport
paramNames,
paramValues,
owner,
ownerName = "",
email,
organization,
runDayOfYear,
startDate = as.character(Sys.Date()),
terminateDate = NULL,
interval = "",
intervalName = "",
dryRun = FALSE
)
Arguments
synopsis String with description of the report and to be used in subject field of email
distributed reports
package String with package name also corresponding to registry
type Character string defining type of auto report. Currently, one of ’subscription’
(default) or ’dispatchment’
fun String providing name of function to be called for generating report
paramNames String vector where each element corresponds to the input parameter to be used
in the above function
paramValues String vector with corresponding values to paramNames
owner String providing the owner of the report. Usually a user name
ownerName String providing full name of owner. Defaults to an empty string to maintain
backwards compatibility
email String with email address to recipient of email containing the report
organization String identifying the organization the owner belongs to
runDayOfYear Integer vector with day numbers of the year when the report is to be run
startDate Date-class date when report will be run first time. Default value is set to Sys.Date()
+ 1 i.e. tomorrow.
terminateDate Date-class date after which report is no longer run. Default value set to NULL in
which case the function will provide an expiry date adding 3 years to the current
date if in a PRODUCTION context and 1 month if not
interval String defining a time interval as defined in seq.POSIXt. Default value is an
empty string
intervalName String providing a human understandable representation of interval. Default
value is an empty string
dryRun Logical defining if global auto report config actually is to be updated. If set to

TRUE the actual config (all of it) will be returned by the function. FALSE by
default

deleteAutoReport 11

Value

Nothing unless dryRun is set TRUE in which case a list of all config will be returned

See Also

deleteAutoReport

deleteAutoReport Delete existing report from config

Description

Delete existing report from config

Usage

deleteAutoReport(autoReportId)

Arguments

autoReportId String providing the auto report unique id

See Also

createAutoReport

export Shiny modules providing GUI and server logic for Export

Description

Functions for registries that wants to implement exporting of registry databases, e.g. for local
development purposes. Also includes relevant helper functions

Usage

exportUCInput(id)

exportUCServer(id, registryName, repoName = registryName, eligible = TRUE)
exportUCApp(registryName = "rapbase")

selectListPubkey(pubkey)

exportDb(registryName, compress = FALSE, session)

12

Arguments
id
registryName

repoName

eligible

pubkey

compress

session

Value

exportGuide

Character string module ID
Character string registry name key

Character string defining the github repository name of the registry. Default
value is registryName.

Logical defining if the module should be allowed to work at full capacity. This
might be useful when access to module products should be restricted. Default is
TRUE, i.e. no restrictions.

Character vector with public keys
Logical if export data is to be compressed (using gzip). FALSE by default.

Shiny session object

Shiny objects, mostly. Helper functions may return other stuff too.

Examples

client user interface function
ui <- shiny::fluidPage(
shiny: :sidebarLayout(
shiny: :sidebarPanel(
exportUCInput(”test”),

),

shiny: :mainPanel(

NULL
)
)
)

server function
server <- function(input, output, session) {
exportUCServer("test”, registryName = "rapbase”)

}

run the shiny app in an interactive environment
if (interactive()) {
shiny: :shinyApp(ui, server)

}

exportGuide

Shiny modules providing the Export Guide

Description

Shiny modules providing the Export Guide

filterAutoRep 13

Usage
exportGuideUI(id)

exportGuideServer(id, registryName)

exportGuideApp()
Arguments
id Character string module ID

registryName Character string registry name key

Value

Functions ui and server representing the (module) app

Examples

ui <- shiny::fluidPage(
exportGuideUI("exportGuide")

)

server <- function(input, output, session) {
exportGuideServer ("exportGuide”, "test")

3

if (interactive()) {
shiny: :shinyApp(ui, server)

}

filterAutoRep Filter auto report data

Description

Generic function to filter various entities from auto report data

Usage

filterAutoRep(data, by, pass)

Arguments
data List (nested) specifying auto reports to be filtered. May be obtained by rapbase: :getConfig(fileName
= "autoReport.yml")
by Character string defining the filtering entity and must be one of c("package”,

"type", "owner"”, "organization”). The term ’package’ represents the reg-
istry name

14 findNextRunDate

pass Character vector defining the values of the filtering entity that will allow reports
to pass through the filter
Value

List of auto reports matching the filtering criteria

Examples

ar <- list(arl = list(type = "A"), ar2 = list(type = "B"))
filterAutoRep(ar, "type"”, "B") # ar2

findNextRunDate Find next run date for automated reports

Description

Find the next date that an automated report is supposed to be run. Likely, this function will only be
relevant for shiny apps when this date is to be printed

Usage

findNextRunDate(
runDayOfYear,
baseDayNum = as.POSIX1t(Sys.Date())$yday + 1,
startDate = NULL,
returnFormat = "%A %e. %B %Y"

Arguments

runDayOfYear Numeric vector providing year-day numbers
baseDayNum Numeric defining base year-day. Default is today

startDate Character string of format "YYYY-MM-DD" defining the date of the very first
run. If set to NULL (default) or a none future date (compared to the date repre-
sented by baseDayNum for the current year) it will be disregarded.

returnFormat String providing return format as described in strptime in the current locale.
Defaults to "%A %d. %B %Y" that will provide something like "Mandag 20.
januar 2019’ in a Norwegian locale

Value

String date for printing

Examples

Will return Jan 3@ in the current year and locale with default formatting
findNextRunDate(c(10, 20, 30), 20)

fireInTheHole 15

fireInTheHole Kick off functions at Rapporteket

Description

This function will normally be executed by a cron daemon. Once started this function will nest
through schedule functions defined in a configuration file, e.g. "rapbaseConfig.yml".

Usage
fireInTheHole(flipPeriod = FALSE)

Arguments

flipPeriod Logical only used for testing. FALSE by default

Details
This is a crontab example running fireInTheHole() every night at 01 hours, Monday through Friday

and with emails suppressed:

@ 1 * x 1-5 Rscript -e 'rapbase::fireInTheHole()' >/dev/null
2>&1

Examples

Depends on the env var R_RAP_CONFIG_PATH being properly set
fireInTheHole()

getConfig Get configuration for package, if any

Description

Try to obtain yaml-formatted configuration placed either as given by the environment variable
R_RAP_CONFIG_PATH or as provided by the package itself. If none can be found the function
exits with an error

Usage

getConfig(fileName = "dbConfig.yml"”, packageName = "rapbase”)

16 getGithub

Arguments
fileName String providing configuration file base name
packageName String providing the package name

Value

A list of (yaml) configuration

Examples

getConfig()

getGithub Collect various data from the GitHub API

Description

Collect various data from the GitHub API

Usage

getGithub(what, value, .token = NULL)

Arguments

what Character string defining the api endpoint. Currently one of c("contributors”,
"members”, "keys").

value Character string specifying what to collect from the given endpoint. For "con-
tributors" this should be the name of the repository, for "members" value should
be the team slug and for "keys" this should be a github user name.

.token Character string providing av valid token that will be used if the api call requires
authentication. Listing of team members do require a token with the appropriate
credentials.

Value

Character vector with results from the GitHub api request

getRapPackages

17

getRapPackages Get all installed Rapporteket packages

Description

Get all installed packages that depends on 'rapbase’ which itself will not be reported

Usage

getRapPackages ()

Value

Character vector of packages names

Examples

Relevant only in a Rapporteket-like context
if (isRapContext()) {

getRapPackages()
}

getRegs Provide vector of registries (i.e. their R packages) in config

Description

Provide vector of registries (i.e. their R packages) in config

Usage

getRegs(config)

Arguments

config list of configuration for automated reports

Value

character vector of registry (package) names

18 howWeDealWithPersonalData

halloRapporteket Plain testing tool

Description

To be used for testing purposes

Usage

halloRapporteket ()

Value

message A test message

howWeDealWithPersonalData
Render text in pop-up

Description

Render text on how Rapporteket deals with personal data

Usage

howWeDealWithPersonalData(session, callerPkg = NULL)

Arguments
session A shiny session object used to personalize the text
callerPkg Character string naming the package that makes a call to this function in case
version number of the caller package should be added to the returned (html) info
text. Default to NULL in which case no version number for the caller will be
added to the info text
Value

fragment html info text

isPkgRapReg 19

isPkgRapReg Test if a package is part of Rapporteket

Description

Test if an installed package is linked to Rapporteket based on dependency to the package 'rapbase’

Usage

isPkgRapReg(pkg)
Arguments

pkg String providing the package name
Value

Logical TRUE if pkg depends on ’rapbase’, FALSE if not

See Also

getRapPackages on how to list all packages that depend om ’rapbase’

Examples

returns FALSE, rapbase has no explicit dependency to itself
isPkgRapReg("rapbase”)

isRapContext Rapporteket context

Description

Call to this function will return TRUE when run on a system where the environment variable
R_RAP_INSTANCE is set to either "DEV", "TEST", "QA" or "PRODUCTION" and FALSE other-
wise

Usage

isRapContext()

Value

Logical if system has a defined Rapporteket context

20 logger

Examples

isRapContext()

loadRegData Provider of data for registries at Rapporteket

Description

Generic to registries, provide reporting data obtained from sql databases Underlying this function
is rapbase::RapporteketDbConnection

Usage

loadRegData(registryName, query, dbType = "mysql"”)

describeRegistryDb(registryName, tabs = c())

Arguments

registryName String Name of the registry as defined in dbConfig.yml

query String SQL query to obtain the data
dbType String Type of db to query, currently "mysql" (default) and "mssql"
tabs Character vector for optional definition of tables to describe. Defaults to an

empty vector in which case all tables are used

Value

data frame containing registry data or a list with table names and corresponding fields with attributes

logger Log user events in shiny applications at Rapporteket

Description

To be used for logging at application level (i.e. when a shiny session is started) or at report level
(i.e. each time a report is run). Logging of single report events should be made from reactive
environments within the shiny server function or from within the (report) functions used by the
same reactive environments.

logger 21

Usage

appLogger(
session,
msg = "No message provided”,
.topcall = sys.call(-1),
.topenv = parent.frame()

)

repLogger(
session,
msg = "No message provided”,
.topcall = sys.call(-1),
.topenv = parent.frame()

)
autLogger(
user,
name,
registryName,
reshld,
type,
pkg,
fun,
param,
msg = "No message provided”,
.topenv = parent.frame()
)
Arguments
session Shiny session object to be used for getting user data. For testing and develop-
ment purposes session can be replaced by 1ist () in which case various config
options might be used to provide something sensible.
msg String providing a user defined message to be added to the log record. Default
value is ’No message provided’.
.topcall Parent call (if any) calling this function. Used to provide the function call with
arguments. Default value is sys.call(-1).
.topenv Name of the parent environment calling this function. Used to provide package
name (i.e. register) this function was called from. Default value is parent. frame().
user String providing owner of an automated report. Its value should correspond to
the actual user name as provided in a shiny session at Rapporteket. Only used
for subscription reports that are run outside a shiny session.
name String providing full name of the report owner. Only used for automated reports

that are run outside a shiny session.

registryName String providing registry name. Only used for automated reports that are run
outside a shiny session.

22 logger

reshld String providing the organization id of the (subscription) report author. Only
used for automated reports that are run outside a shiny session.

type Character string defining the type of report. Only used for automated reports
that are run outside a shiny session in which case its value will replace that of
.topcall.

pkg Character string naming the package of the function that is to be logged. Only

used for automated reports that are run outside a shiny session.

fun Character string naming the function that should be logged. Only used for auto-
mated reports that are run outside a shiny session.

param List of named function parameter. Only used for automated reports that are run
outside a shiny session.

Details

The below fields will be appended to the log, in the following order:

1. time: date-time as event is logged as format (time, "%Y-%m-%d %H:%M:%S")

2. user: username as found in the shiny session object or as provided by function argument
3. name: full name of user as found in the shiny session object
4

. group: users group membership as provided by the shiny session object. Normally, this will
correspond to the registry the user belongs to

5. role: users role as provided by the shiny session object. Its value will depend on whatever
is delivered by the authorization provider, but for OpenQReg registries 'LU’ (local user) and
’SC’ (system coordinator) are typical values

6. resh_id: the organization id of the current user as provided by the shiny session object, OR,
when source of logging is auto reports, the organization ID of the data source used to make
the report

7. environment: environment from where the logger function was called (only provided by
repLogger())

8. call: function (with arguments) from where the logger was called (only provided by repLogger())
9. message: an optional message defined as argument to the function
The autLogger () function is a special case to be used for automated reports. Since such reports
are run outside a reactive (shiny) context shiny session data are not available to the logger. Hence,
logging data must be provided as arguments directly. As of rapbase version 1.12.0 logging of

automated reports are already taken care of. Hence, this function should not be applied per registry
application.

Value

Returns nothing but calls a logging appender

logger 23

Note

Pseudo code of how applLogger () may be implemented:

library(shiny)
library(raplog)

server <- function(input, output, session) {
raplog: :appLogger(session, msg = "Smerteregisteret: starting shiny app”)

Pseudo code on how repLogger() can be implemented as part of a function in a reactive (shiny)
context. First, this is an example of the shiny server function with the (reactive) function renderPlot ()
calling a function that provides a histogram:

library(shiny)
library(raplog)

server <- function(input, output, session) {
output$hist <- renderPlot({

makeHist(data, var = input$var, bins = input$bins, session = session)

D

Then, logging is called within the function makeHist():
makeHist <- function(data, var, bins, ...) {

if ("session” %in% names(list(...))) {
raplog: :repLogger(session = list(...)[["session"]],
msg = "Providing histogram")

Examples

Depend on the environment variable R_RAP_CONFIG_PATH being set
try(appLogger(list()))

Depend on the environment variable R_RAP_CONFIG_PATH being set
try(repLogger(list()))

24 makeAutoReportTab

Depend on the environment variable R_RAP_CONFIG_PATH being set
try(autLogger(user = "ttester”, registryName = "rapbase”, reshId = "999999"))

makeAutoReportTab Make table of automated reports

Description

Make a table to be rendered in a shiny app providing automated reports from a given user or registry
as obtained from the shiny session object provided or environmental variables when run inside an
app container.

Usage

makeAutoReportTab(
session,
namespace = character(),
user = rapbase::getUserName(session),
group = rapbase::getUserGroups(session),
orgld = rapbase::getUserReshId(session),
type = "subscription”,
mapOrgId = NULL,
includeReportId = FALSE

)
Arguments

session A shiny session object

namespace String naming namespace. Defaults to character() in which case no names-
pace will be created. When this function is used by shiny modules namespace
must be provided.

user Character string providing the username. Introduced as a new argument when
running apps inside containers. Default value is set to rapbase: : getUserName (session)
to allow backward compatibility.

group Character string defining the registry, normally corresponding to the R package
name and the value stemming from the SHINYPROXY_GROUPS environment
variable. Introduced as a new argument when running apps inside containers.
Default value is set to rapbase: : getUserGroups (session) to allow backward
compatibility.

orgld Character string or integer defining the organization (id) for user. Default value
is set to rapbase: : getUserReshId(session) to allow backward compatibility.

type Character string defining the type of auto reports to tabulate. Must be one

of "subscription”, "dispatchment” or "bulletin”. Default value set to
"subscription”.

makeRunDayOfYearSequence 25

mapOrgId Data frame containing the two columns "name’ and ’id’ corresponding to unique
name and id of organizations. Default is NULL in which case the ids provided
in auto report data will be used. In case mapOrgld is not NULL but no id match
is found the id found in the auto report data will also be used

includeReportId

Logical if the unique report id should be added as the last column in the table.
FALSE by default.

Details

Each table record (line) represents a uniquely defined automated report. For each line two shiny
action buttons are provided to allow for editing and deleting of each entry. For applications im-
plementing this table observing events on these action buttons may be used to allow users to
manage automated reports by GUI The action buttons for editing and deleting are provided with
the static input ids edit_button and del_button and upon clicking the button part of their ids will
change to the unique id of the report. Hence, a GUI call for editing a report can be caught by
shiny: :observeEvent("edit_button") and within this event the report id is obtained by collect-
ing the string after the double underscore, e.g. strsplit(input$edit_button, "__")[[111[2].

Optionally, report id may be provided as the last column in the table to allow further development
for registry specific purposes. Regardless, this column should normally be hidden in the GUI.

Take a look at the example shiny server function in rapRegTemplate on how this function may be
implemented.

Value

Matrix providing a table to be rendered in a shiny app

makeRunDayOfYearSequence
Make a sequence of day numbers from av given date and interval

Description
This function provides an even sequence of day numbers spanning 365/366 days from the start date
and interval provided. Mainly to be used in setting up automated reports at Rapporteket

Usage

makeRunDayOfYearSequence(startDay = Sys.Date(), interval)

Arguments
startDay Start date of sequence. May be provided as a string, e.g. \"2019-03-17\" or as
class \"Date\". Defaults to today
interval String representing a valid seq.POSIXt interval such as "DSTday", "week",

"month", "quarter" or "year")

https://github.com/Rapporteket/rapRegTemplate/blob/main/inst/shinyApps/app1/server.R

26

Value

Integer vector of day numbers

makeStandardTable

Examples
makeRunDayOfYearSequence(interval = "month")
makeStandardTable Make standard table for rmarkdown reports
Description

Function that will return tables used in reports.

Usage
mst (
tab,
col_names = colnames(tab),
type = "pdf”,
Cap - n H,
label = knitr::opts_current$get(”label”),
digs = 0,
align = NULL,
fs = 8,
1sd = FALSE
)
Arguments
tab Data frame or matrix representing the table.
col_names Character vector with column names. Defaults colnames(tab).
type Character string defining output, either "html" or "pdf". Default is "pdf".
cap Character string with table caption. Empty string by default.
label Character string defining the label in case the table needs to be referenced else-
where in the overall document. For instance, setting this to 'my_table’ the
corresponding inline rmarkdown reference to use is \@ref(tab:my_table).
Please note that for this to work for both LaTex and HTML the bookdown docu-
ment processing functions must be used, i.e. bookdown: : pdf_document2() and
bookdown: :html_document2(), respectively. Default valueis knitr::opts_current$get("label”)
in which case the name of the current R chunk will be used as label.
digs Integer number of digits to use. 0 by default.
align Character vector specifying column alignment in the LaTeX way, e.g. c("1",

n_n
’

C

"r'") will align the first column to the left, center the second and right-align

the last one. Default is NULL in which case numeric columns are right-aligned

and all other columns are left-aligned.

navbarWidget 27

fs Integer providing the font size. Applies only for pdf output. Default value is 8.
1sd Logical if table is to be scaled down. Applies only for pdf output. FALSE by
default.
Details

mst () creates RMarkdown code for creating standard tables.

Value

Character string containing RMarkdown table code

Examples

mst(tab = mtcars[1:10, 1)

navbarWidget Shiny modules providing GUI and server logic for user info widget

Description

Shiny modules for making a user information widget in registry shiny apps at Rapporteket. One
benefit using these modules will be reduced complexity and number of code lines for each registry.

Usage

navbarWidgetInput(id, addUserInfo = TRUE, selectOrganization = FALSE)

navbarWidgetServer(id, orgName, caller = environmentName(rlang::caller_env()))

navbarWidgetServer2(

id,

orgName,

caller = environmentName(topenv(parent.frame()))
)

navbarWidgetApp(orgName = "Org Name")

Arguments

id Character string providing module namespace

addUserInfo Logical defining if an "about" hyperlink is to be added

selectOrganization
Logical providing option for selecting among available organizations and roles.

orgName Character string naming the organization

28 navbarWidget

caller Character string naming the environment this function was called from. Default
value is environmentName (topenv(parent.frame())). The value is used to
display the current version of the R package representing the registry at Rap-
porteket. If this module is called from exported functions in the registry R pack-
age the default value should be applied. If the module is called from outside the
registry environment caller must be set to the actual name of the R package.

Details

These modules take use of the shiny session object to obtain data for the widget. Hence, a Rap-
porteket like context will be needed for these modules to function properly. For deployment of
(shiny) application as containers make sure to migrate to navbarWidgetServer2(). In addition to
serving the user information widget, this function provides a list of reactive user attributes. Hence,
when using navbarWidgetServer2() the source of (static) user attributes is no longer the shiny
session object but rather the list object (of reactive user attributes) returned by this function.

Value

Shiny objects, mostly. navbarWidgetServer2() invisibly returns a list of reactive values repre-
senting user metadata and privileges. See userAttribute for further details on these values.

Examples

client user interface function
ui <- shiny::taglist(
shiny: :navbarPage(
"Testpage”,
shiny: : tabPanel(
"Testpanel”,
shiny: :mainPanel(
navbarWidgetInput(”testWidget")
)
)
)
)

server function

server <- function(input, output, session) {
navbarWidgetServer("testWidget"”, orgName = "Test org"”, caller = "Rpkg")

3

run the app in an interactive session and a Rapporteket like environment
if (interactive() && isRapContext()) {
shiny: :shinyApp(ui, server)

3

noOptOutOk 29

noOptOutOk Provide a no-opt-out ok message

Description

To be applied for user input when there is actually no choice :-)

Usage
noOptOutOok()

Value

String with possible state of mind (in Norwegian) once left with no options

Examples

noOptOutOk ()

rapbase rapbase: Base Functions and Resources for Rapporteket

Description

Provide common functions and resources for registry specific R-packages at Rapporteket. This
packages is relevant for developers of packages/registries at Rapporteket

rapCloseDbConnection Close down data connection handle

Description

Close down data connection handle

Usage

rapCloseDbConnection(con)

Arguments

con Open connection object that is to be closed

30 readAutoReportData

rapOpenDbConnection Provide connection handle for data source at Rapporteket

Description
Generic to registries, handle the data source connections, including usernames and passwords
needed to open these connections

Usage
rapOpenDbConnection(registryName, dbType = "mysql”)

Arguments

registryName String id used for the registry in global configuration file from which information
on the database connection is provided

dbType String providing type of data source, one of "mysql" and "mssql". Defaults to
Hmysqlll

Value

A named list of con and drv representing the db connection handle and driver, respectively.

readAutoReportData Read automated report metadata

Description

Read automated report metadata

Usage
readAutoReportData(fileName = "autoReport.yml”, packageName = "rapbase”)
Arguments
fileName String defining name of the yaml configuration file. Default autoReport.yml’
packageName String defining the package in which the above configuration file resides. A
configuration file within an R-package is only used in case the environmental
variable 'R_RAP_CONFIG_PATH’ is not defined (empty)
Value

a list of yaml data

Examples

readAutoReportData()

renderRmd 31

renderRmd Render documents from rmarkdown files at Rapporteket

Description

Function that renders documents at Rapporteket from rmarkdown source files. Output formats may
be (vanilla) HTML or PDF based on our own pandoc latex template or fragments of html when the
result is to be embedded in existing web pages. Rmarkdown allow parameters to be part of report
processing. Thus, parameters that are specific to reports must be provided (as a named list) when
calling renderRmd().

Usage

renderRmd (
sourceFile,
outputType = "html"”,
logoFile = NULL,
params = list(),
template = "default”

)
Arguments
sourceFile Character string providing the path to the rmarkdown source file.
outputType Character string specifying the output format. Must be one of c("pdf”, "html",
"html_fragment"). Default value is "html".
logoFile Character string with path to the logo to be used for PDF output. Often, this will
be the registry logo. Only PNG and PDF graphics are allowed. Default value is
NULL in which case no such logo will be added to the output document.
params List of report parameters (as named values) to override the corresponding en-
tries under params in the rmarkdown document yaml header. Default is NULL in
which case no parameters as defined in the rmarkdown document will be over-
ridden.
template Character string defining which template to use for making pdf documents. Must
be one of "default" or "document” where the first is assumed if this argument is
not set.
Value

Character string with path to the rendered file or, if outputType is set to "html_fragment", a char-
acter string providing an html fragment. Files are named according to tempfile() with an empty
pattern and with the extension according to outputType ("pdf" or "html").

32 runAutoReport

runAutoReport Run reports as defined in yaml config and ship content by email

Description

Usually to be called by a scheduler, e.g. cron. If the provided day of year matches those of the
config the report is run as otherwise specified in config. Functions called upon are expected to
return a character string providing a path to a file that can be attached to an email or, in case of a
bulletin, the email body itself. For bulletins, files cannot be attached. The email itself is prepared
and sent to recipients defined in the config

Usage

runAutoReport (
dayNumber = as.POSIX1t(Sys.Date())$yday + 1,
type = c("subscription”, "dispatchment"”),
dryRun = FALSE

)
Arguments
dayNumber Integer day of year where January 1stis 1. Defaults to current day, i.e. as.POSIX1t(Sys.Date())$yday
+ 1 (POSIXIt yday is base 0)
type Character vector defining the type of reports to be processed. May contain one or
more of c("subscription”, "dispatchment”, "bulletin"). Defaults value
set to c("subscription”, "dispatchment”).
dryRun Logical defining if emails are to be sent. If TRUE a message with reference to
the payload file is given but no emails will actually be sent. Default is FALSE
Value

Emails with corresponding file attachment. If dryRun == TRUE just a message

Examples

Example depend on environment variable R_RAP_CONFIG_PATH being set
runAutoReport ()

runBulletin 33

runBulletin Run bulletin auto reports

Description

This is a wrapper for runAutoReport () to issue bulletins. Purpose is to ease simplify fire-in-the-
hole at Rapporteket

Usage

runBulletin()

Value

Whatever runAutoReport () might provide

runNoweb runNoweb

Description

Function to run noweb file contained in a package. Assume all noweb files of the package are placed
flat under the inst directory

Usage

runNoweb (nowebFileName, packageName, weaveMethod = "knitr")

Arguments

nowebFileName Basename of the noweb file, e.g. *'myFile.Rnw’.
packageName Name of the package containing noweb file(s)

weaveMethod Method to apply for weaving. Currently available are ’Sweave’ and ’knitr’,
default to the latter.

34 sendEmail

sanitizelog Sanitize log entries that have reached end of life

Description

Sanitize log entries that have reached end of life

Usage

sanitizelog()

Value

NULL on success

sendEmail Send email from Rapporteket

Description
This function can be used to send email from within R at Rapporteket. It relies on (and must hence
be provided) specific settings through local configuration to work properly.

Usage

sendEmail(conf, to, subject, text, attFile = NULL)

Arguments
conf List containing (Rapporteket) config such as sender email address, SMTP server
url and port number
to Character vector containing email addresses. May also contain full names like
’Jane Doe <janed@nowhere.com>’
subject Character string providing email subject.
text Character string providing the plain email text
attFile Character string providing the full file path to an attachment. Default is NULL
in which case no attachment is made
Value

Invisible sending of email

stagingData 35

stagingData Staging data functions

Description

Low level functions for handling registry staging data at Rapporteket. As such, these functions does
not provide staging data management per se. Proper management, e.g. staging data updates and
fallback logic must therefore be established within each registry that take staging data into use.

Usage

listStagingData(registryName, dir = Sys.getenv("R_RAP_CONFIG_PATH"))
mtimeStagingData(registryName, dir = Sys.getenv("R_RAP_CONFIG_PATH"))

saveStagingData(

registryName,

dataName,

data,

dir = Sys.getenv("R_RAP_CONFIG_PATH")
)

loadStagingData(registryName, dataName, dir = Sys.getenv("R_RAP_CONFIG_PATH"))

deleteStagingData(

registryName,

dataName,

dir = Sys.getenv("R_RAP_CONFIG_PATH")
)

cleanStagingData(eolAge, dryRun = TRUE)

Arguments

registryName Character string providing the registry name.

dir Character string providing the path to where the staging data directory resides in
case of storage as files. Default value is Sys.getenv("R_RAP_CONFIG_PATH").

dataName Character string providing the data set name.
data A data object such as a data.frame to be stored as dataName.
eolAge Numeric providing the staging data end-of-life age in seconds. Based on the

current time and the time of storage staging files older than eolAge will be
identified as subject for removal.

dryRun Logical defining if function is to be run in dry (none destructive) mode.

36

Details

stagingData

Staging data can be stored as files or as binary large objects in a database and method of choice
is defined by the rapbase configuration. Regardless of storage method a per registry symmetric
encryption of storage content is enforced. Keys used for encryption are generated from existing
database credentials. Therefore, please note that removing or changing such credentials will render
any historic staging data inaccessible.

cleanStagingData() globally removes all staging data with store date prior to the end-of-life age
provided. This is a vastly destructive function that should be used with great care.

Value

listStagingData() returns a character vector of staging data sets for the given registry
(registryName).

mtimeStagingData() returns a staging data set named POSIXct vector of modification times
for the given registry (registryName).

saveStagingData() when successful returns the data object (data), invisibly. If saving fails
a warning is issued and the function returns FALSE.

loadStagingData() returns the data object corresponding to the name given upon saving
(dataName). If the requested data set for loading does not exist the function returns FALSE.

deleteStagingData() returns TRUE if the data set was deleted and FALSE if not.
cleanStagingData() returns a list of data sets (to be) removed.

rapbase: : :pathStagingData() is an internal helper function and returns a character string
with the path to the staging directory of registryName. If its parent directory (dir) does not
exists an error is returned.

Examples

Prep test data
registryName <- "rapbase”
dataName <- "testData”
data <- mtcars

dir <- tempdir()

Save data for staging
saveStagingData(registryName, dataName, data, dir)

List data currently in staging
listStagingData(registryName, dir)

Retrieve data set from staging and compare to outset
stagedData <- loadStagingData(registryName, dataName, dir)
identical(data, stagedData)

Get modification time for staging file(s)
mtimeStagingData(registryName, dir)

stats 37

stats Shiny modules and helper functions for registry usage reports

Description

These modules may be used by registries for easy setup of usage reports. The intended purpose is
to provide registry staff access to when and by whom the resources at Rapporteket were used, i.e.
application start-up and single report usage. As such, this will be a tool to provide useful statistics.
However, it might also serve as a formal monitor utility but only if logging is carefully implemented
throughout the relevant functions that make up the registry application at Rapporteket.

Usage

statsInput(id)

statsUI(id)

statsServer(id, registryName, eligible = TRUE)
statsApp()

logFormat(log)

logTimeFrame(log, startDate, endDate)

Arguments

id Character string shiny module id
registryName Character string registry name key

eligible Logical defining if the module should be allowed to work at full capacity. This
might be useful when access to module products should be restricted. Default is
TRUE, i.e. no restrictions.

log Data frame containing log data (in Rapporteket format)
startDate Date object defining start of interval (character representation "YYYY-MM-
DD")
endDate Date object defining end of interval (character representation "YYYY-MM-DD")
Value

Shiny objects, mostly. Helper functions may return other stuff too.

Examples

client user interface function
ui <- shiny::fluidPage(
shiny: :sidebarLayout(

38

shiny: :sidebarPanel (statsInput("test")),
shiny: :mainPanel(statsUI("test"))
)
)

server function
server <- function(input, output, session) {
statsServer("test"”, registryName = "rapbase”, eligible = TRUE)

}

run the shiny app in an interactive environment
if (interactive()) {
shiny: :shinyApp(ui, server)

}

statsGuide

statsGuide Shiny modules providing the Stats Guide

Description

Shiny modules providing the Stats Guide

Usage

statsGuideUI (id)
statsGuideServer(id, registryName)

statsGuideApp()

Arguments

id Character string module ID

registryName Character string registry name key

Value

Functions ui and server representing the (module) app

Examples

ui <- shiny::fluidPage(
statsGuideUI("statsGuide")
)

server <- function(input, output, session) {
statsGuideServer("statsGuide”, "test")

}

unitAttribute 39

if (interactive()) {
shiny: :shinyApp(ui, server)

}

unitAttribute Get unit attributes from an access tree file

Description

Obtain organization unit attributes from an access tree JSON file

Usage

unitAttribute(unit, what, file = NULL, path = Sys.getenv("R_RAP_CONFIG_PATH"))

Arguments
unit Integer providing the look-up unit id
what Character string defining what to return for the given unit id
file Character string file name of the JSON file. Default values is NULL in which
case the corresponding value from rapbaseConfig.yml will be used.
path Character string file path of the JSON file. Default value is Sys. getenv("R_RAP_CONFIG_PATH").
Value

The corresponding value of *what’.

upgradeAutoReportData Upgrade auto reports

Description
Upgrade auto report config as new features emerge. Currently, the type definition is added and set
to “subscription’ that historically has been the only type used

Usage

upgradeAutoReportData(config)

Arguments

config List of auto report configuration

Value

List of (upgraded) auto report configuration

40 userAttribute

userAttribute User attributes in container apps running behind shinyproxy

Description

For apps running as containers particular environment variables must be defined for an orderly
handling of dynamic user privileges. This function makes use of environmental variables defined
by shinyproxy to provide available privileges for the shiny application.

These are helper function for userInfo. When used without a shiny session object calls to these
functions is made without any arguments. If redefining contexts is needed, please use userInfo
instead.

Usage

userAttribute(group, unit = NULL)

getUserEmail (shinySession = NULL, group = NULL)

getUserFullName(shinySession = NULL, group = NULL)
getUserGroups(shinySession = NULL, group = NULL)
getUserName(shinySession = NULL, group = NULL)
getUserPhone(shinySession = NULL, group = NULL)
getUserReshId(shinySession = NULL, group = NULL)

getUserRole(shinySession = NULL, group = NULL)

Arguments
group Character string providing the name of the app R package name. The term
"group" is used to relate to the environmental variable SHINYPROXY_USERGROUPS
that corresponds to the apps a given user can access. Default value is NULL but
should always be set when shiny app is run as a shinyproxy container.
unit Integer providing the look-up unit id. Default value is NULL in which case all

privileges for group are returned.

shinySession A shiny session object. Default value is NULL

Value
Invisibly a list of user metadata and privileges:

name The username for whom the privileges apply.

fullName User full name

userInfo 41

phone User phone number

email User email

group Group of which the user is a member.

unit Unit id under which the privileges are defined.
org Organization id for the user.

role Role of the user.

orgName Name of the organization as defined under the unit id.

String with user attribute

Examples

Requires a valid shiny session object
try(getUserEmail())
try(getUserEmail (shinySessionObject))

userInfo Provide user attributes based on environment context

Description

Extracts elements from either config, url (shiny), shiny session or environmental variables relevant
for user data such as name, group, role and org id (e.g. resh id). Source of info is based on
environment context and can be controlled by altering the default settings for which contexts that
will apply for the various sources of user data. This function will normally be used via its helper
functions (see below).

Usage

userInfo(
entity,
shinySession = NULL,
devContexts = c("DEV"),
testContexts = c("TEST"),
prodContexts = c("QA", "QAC", "PRODUCTION”, "PRODUCTIONC"),
group = NULL

Arguments

entity String defining the element to return. Currently, one of "user’, groups’, ‘resh_id’,
’role’, “email’, *full_name’ or ’phone’.

shinySession Shiny session object (list, NULL by default). Must be provided when the source
of user attributes is either the shiny app url or an external authentication provider.
By default this will apply to the "TEST’, ’QA’” and "'PRODUCTION’ contexts in
which case the shiny session object must be provided.

42 writeAutoReportData

devContexts A character vector providing unique instances to be regarded as a development
context. In this context user attributes will be read from configuration as pro-
vided by ’rapbaseConfig.yml’. The instances provided cannot overlap instances
provided in any other contexts. By default set to c("DEV").

testContexts A character vector providing unique instances to be regarded as a test context.
In this context user attributes will be read from the url call to a shiny applica-
tion. Hence, for this context the corresponding shiny session object must also
be provided. The instances provided cannot overlap instances provided in any
other contexts. By default set to c("TEST").

prodContexts A character vector providing unique instances to be regarded as a production
context. In this context user attributes will be read from the shiny session object
(on deployment in shiny-server) or, from environmental variables (on standalone
container deployment). Hence, for this context the corresponding shiny session
object must also be provided. Instances provided cannot overlap instances in any
other contexts. By default setto c("QA", "QAC", "PRODUCTION", "PRODUCTIONC").
Duplication as seen by the "C" suffix will be needed as long as apps in question
are to be run on both shiny-server and as standalone containers.

group Character string providing the name of the app R package name. The term
"group” is used to relate to the environmental variable SHINYPROXY_USERGROUPS
that corresponds to the apps a given user can access.

Value

String of single user data element

See Also

getUserName, getUserGroups, getUserReshld, getUserRole

writeAutoReportData Write automated report metadata

Description

Write automated report metadata

Usage

writeAutoReportData(
fileName = "autoReport.yml"”,
config,
packageName = "rapbase”

)

writeAutoReportData 43

Arguments
fileName String defining name of the yaml configuration file. Default autoReport.yml’
config a list of yaml configuration
packageName String defining the package in which the above configuration file resides. A
configuration file within an R-package is only used in case the environmental
variable 'R_RAP_CONFIG_PATH’ is not defined (empty)
Examples

Example depend on environment variable R_RAP_CONFIG_PATH being set
config <- readAutoReportData()
try(writeAutoReportData(config = config))

Index

+ datasets
appLog, 4

.getFun, 3

.testAutoReport, 3

applLog, 4

appLogger (logger), 20
appNavbarUserWidget, 4

autLogger (logger), 20

autoReport, 6

autoReportApp (autoReport), 6
autoReportFormatInput (autoReport), 6
autoReportFormatSercer (autoReport), 6
autoReportFormatServer (autoReport), 6
autoReportInput (autoReport), 6
autoReportOrglnput (autoReport), 6
autoReportOrgServer (autoReport), 6
autoReportServer (autoReport), 6
autoReportServer2 (autoReport), 6
autoReportUI (autoReport), 6

cleanStagingData (stagingData), 35
createAutoReport, 9, 11

deleteAutoReport, 11, 11
deleteStagingData (stagingData), 35
describeRegistryDb (loadRegData), 20

export, 11

exportDb (export), 11
exportGuide, 12

exportGuideApp (exportGuide), 12
exportGuideServer (exportGuide), 12
exportGuideUI (exportGuide), 12
exportUCApp (export), 11
exportUCInput (export), 11
exportUCServer (export), 11

filterAutoRep, 13
findNextRunDate, 14
fireInTheHole, 15

44

getConfig, 15

getGithub, 16
getRapPackages, 17, 19
getRegs, 17

getUserEmail (userAttribute), 40
getUserFullName (userAttribute), 40
getUserGroups, 42

getUserGroups (userAttribute), 40
getUserName, 42

getUserName (userAttribute), 40
getUserPhone (userAttribute), 40
getUserReshld, 42

getUserReshld (userAttribute), 40
getUserRole, 42

getUserRole (userAttribute), 40

halloRapporteket, 18
howWeDealWithPersonalData, 18

isPkgRapReg, 19
isRapContext, 19

listStagingData (stagingData), 35
loadRegData, 20

loadStagingData (stagingData), 35
logFormat (stats), 37

logger, 20

logTimeFrame (stats), 37

makeAutoReportTab, 24
makeRunDayOfYearSequence, 25
makeStandardTable, 26

mst (makeStandardTable), 26
mtimeStagingData (stagingData), 35

navbarWidget, 27

navbarWidgetApp (navbarWidget), 27
navbarWidgetInput (navbarWidget), 27
navbarWidgetServer, 7
navbarWidgetServer (navbarWidget), 27
navbarWidgetServer?2 (navbarWidget), 27

INDEX

noOptOutOk, 29
orglList2df (autoReport), 6

rapbase, 29
rapCloseDbConnection, 29
rapOpenDbConnection, 30
readAutoReportData, 30
renderRmd, 31

repLogger (logger), 20
runAutoReport, 32
runBulletin, 33
runNoweb, 33

sanitizelog, 34

saveStagingData (stagingData), 35
selectListPubkey (export), 11
sendEmail, 34

seq.POSIXt, 10

stagingData, 35

stats, 37

statsApp (stats), 37
statsGuide, 38

statsGuideApp (statsGuide), 38
statsGuideServer (statsGuide), 38
statsGuideUI (statsGuide), 38
statsInput (stats), 37
statsServer (stats), 37

statsUI (stats), 37

strptime, /4

unitAttribute, 39
upgradeAutoReportData, 39
userAttribute, 28, 40
userInfo, 40, 41

writeAutoReportData, 42

45

	.getFun
	.testAutoReport
	appLog
	appNavbarUserWidget
	autoReport
	createAutoReport
	deleteAutoReport
	export
	exportGuide
	filterAutoRep
	findNextRunDate
	fireInTheHole
	getConfig
	getGithub
	getRapPackages
	getRegs
	halloRapporteket
	howWeDealWithPersonalData
	isPkgRapReg
	isRapContext
	loadRegData
	logger
	makeAutoReportTab
	makeRunDayOfYearSequence
	makeStandardTable
	navbarWidget
	noOptOutOk
	rapbase
	rapCloseDbConnection
	rapOpenDbConnection
	readAutoReportData
	renderRmd
	runAutoReport
	runBulletin
	runNoweb
	sanitizeLog
	sendEmail
	stagingData
	stats
	statsGuide
	unitAttribute
	upgradeAutoReportData
	userAttribute
	userInfo
	writeAutoReportData
	Index

